If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2-12p-210=0
a = 6; b = -12; c = -210;
Δ = b2-4ac
Δ = -122-4·6·(-210)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-72}{2*6}=\frac{-60}{12} =-5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+72}{2*6}=\frac{84}{12} =7 $
| 3(2+2x)=6 | | -28=3y | | 2z^2+1=33 | | y-6/4+y-3/5=5y-4 | | −2(−3x+3)+3x+3= 78 | | 37.1=5.3x | | X2-9x-432=0 | | 3(4+2x)=-36 | | 2/3(9z-21)=-2z+10 | | (512^(x-2))/(((1)/(64))^(3x))=512 | | 90=x-20x | | 90=3x+45 | | 10v-5v=45 | | x^2+20x=18x+48 | | 11x-6=66 | | 295-d)=2-4d | | 13j-12j=20 | | 3(x-7)=0.3(x+2)+2.11 | | 3(x-7)=9=0.3(x+2)+2.11 | | x²=17960 | | 6n-5n=17 | | 2x-6+(60-x)=180 | | 4+2(5x8)=4x+2 | | 23x=28x+57 | | 2x2-1=15 | | 180=4x+2x+6 | | 2x-6+(60-x)=90 | | 5x+8+54=180 | | 180=4x(2x+6) | | –2(4x–8)=–8 | | -5-3(3w)=-98 | | x+5/2=9/4 |